Predictors of measurement accuracy in the remote sensing of CO₂ emissions Dahl Winters RTI International, P.O. Box 12194, Research Triangle Park, NC 27709 dwinters@rti.org ## **ABSTRACT** Remote sensing confers several advantages over ground-based measurements that make it an important tool for developing CO₂ emissions inventories. Anthropogenic CO₂ monitoring requires a high degree of accuracy in order to detect changes against the natural background variations of CO₂. While studies indicate that some satellites already have this level of CO₂ measurement accuracy, it is unclear what instrument properties might be responsible. Satellite instruments have been designed with a wide variety of spatial, temporal, and spectral resolutions depending on their original mission objectives, and any one or more of these properties might allow for a high CO₂ measurement accuracy. The goal of this work was to determine whether any instrument properties might be good predictors of CO₂ measurement accuracy, since this information would be useful for the design of future satellite instruments for monitoring CO₂ emissions. The instrument properties of 25 current and planned satellite missions up to 2020 were compiled, alongside studies demonstrating the CO₂ measurement accuracy of these instruments. Using multiple linear regression models, the combination of spatial resolution and swath width was found to be a significant predictor of CO₂ measurement accuracy. The most accurate satellite instruments are also described, as well as suggestions for improving existing CO₂ emissions inventories by combining their data with ground measurements. ## INTRODUCTION To perform CO₂ emissions inventories, ideally every emissions source should be accounted for. This is where remote sensing can be a powerful tool. Satellites can measure CO₂ from places where ground monitoring is impractical or infeasible, and could provide a check on ground-measured emissions once calibrated by ground truthing. Simultaneous CO₂ measurements can be done over a large area, limited only by the satellite instrument's swath width. A snapshot of CO₂ over the earth can easily be done from space, whereas it would require a massive network of ground-based CO₂ monitors to achieve the same coverage from the ground. While remote sensing would seem to be a powerful tool for CO_2 emissions inventories, it is notable that none of the existing satellite instruments were designed to monitor strong anthropogenic CO_2 emissions from space. Instead, they were meant to provide additional constraints on natural CO₂ sources and sinks, or had different mission objectives altogether (Bovensmann *et al.* 2010). As an example, the SCIAMACHY instrument can detect atmospheric CO₂ with 2.5 ppmv accuracy, but was designed for the detection of a variety of trace gases (Reuter *et al.* 2011). The first space mission designed specifically for CO₂ monitoring was GOSAT, which did not launch until 2009 (Crevoisier *et al.* 2009). However, its spatial resolution is too coarse to be able to resolve the fine details of anthropogenic emissions sources. To resolve the structure of CO₂ plumes from coal-fired power plants, a spatial resolution of 2x2 km (4 km²) was found to be necessary (Bovensmann *et al.* 2010). This resolution is planned for the CarbonSat instrument, which will not be ready for launch until 2018. Satellite instruments with CO₂-sensing capability are able to measure CO₂ concentration with varying degrees of accuracy. This raises the question of what factors might be responsible for the high level of accuracy necessary for monitoring anthropogenic CO₂ emissions. A clear sky free of scattering due to aerosols and cirrus clouds lends itself to more accurate CO₂ measurements (Aben *et al.* 2007). However, not much is known about what specific properties of an instrument might enable it to achieve high measurement accuracy. If this information were known, this would help inform the design of future satellite missions for monitoring anthropogenic CO₂ emissions. The goal of this work was to determine whether there were any properties of existing or planned satellite instruments that might be good predictors of CO₂ measurement accuracy. ## **APPROACH** An initial list of CO₂-sensing satellite instruments was developed by searching the CEOS satellite instrument database of the European Space Agency for instruments capable of detecting CO₂ (ESA 2011). A total of 25 existing and planned missions up until 2020 were found, with 15 total instruments (Table 1); some instruments are planned to be reused on multiple missions. These instruments have common properties such as temporal resolution (repeat cycle), spectral resolution, spatial resolution (ground pixel size), and swath width. Of these, only the last two were considered to be potentially informative and thus were explored in this paper; the former were believed to have no relationship to CO₂ measurement accuracy though they may still be of interest for measuring CO₂. These properties are given as follows. The orbital parameters of a satellite determine its *repeat cycle*, which is the time before the onboard instrument is able to image the same location in space. This repeat cycle can vary between 3 and 30 days. The time it takes before CO₂ concentration is determined within the same column of air should not have a relationship to the actual CO₂ concentration measured during a single measurement event. However, repeat cycle is important for annual estimates of CO₂ concentration, which are derived from more frequent measurements. The more frequent the measurement, the greater the probability that the emissions from episodic anthropogenic events such as startups, shutdowns, and malfunctions may be captured. Spectral resolution is the smallest wavelength difference that an instrument can resolve. An instrument that can resolve wavelengths 0.25 nm apart is considered to have finer spectral resolution than one that can only resolve wavelengths 0.5 nm apart. Spectral resolution alone is not believed to have a good relationship to how well the instrument will measure CO_2 because coverage within the CO_2 absorption bands varies by instrument. An instrument might have fine spectral resolution within multiple bands because it was designed to sense a variety of atmospheric trace gases, whereas another instrument might have coarser spectral resolution but with greater coverage across one or more CO_2 absorption bands. In contrast to temporal and spectral resolution, *spatial resolution* (ground pixel size) is believed to be more informative about CO₂ measurement accuracy. Studies that determine how accurate a satellite instrument is at detecting CO₂ do so by comparison to records obtained from the ground or from the air. These records are obtained locally, with a very fine spatial resolution. As the ground pixel size becomes smaller, the more the instrument's detected CO₂ will approximate the local CO₂ variations in such studies. When the instrument's spatial resolution and that of the ground records more closely match, the accuracy of the remotely sensed CO₂ emissions should increase. Swath width is the width of the instrument's field of view, as projected onto the ground. A direct relationship between swath width and spatial resolution is expected because of limitations in the sensing technology used. An instrument with high spatial resolution will be more likely to have a narrow swath width because only so much light can be received by each element of the sensor. To achieve a wider swath width, the sensor would need to be larger, necessitating greater data processing and transfer requirements. Conversely, instruments designed to have a long swath width for broader land surface coverage should be expected to have coarser spatial resolution. Since spatial resolution is expected to have a relationship to CO₂ measurement accuracy, swath width is also expected to show a relationship. ## **Data and Methods** Instrument spatial resolution and swath width data was gathered from the ESA CEOS database, while a literature search was conducted for data on CO₂ measurement accuracy for those instruments (Table 1). Whenever two or more values were found for CO₂ measurement accuracy, the values were averaged. Next, exploratory plots were done with CO₂ measurement accuracy as the dependent variable and either spatial resolution or swath width as the independent variable. These plots suggested that one or more log transformations would be useful. To further quantify the potential relationships between spatial resolution, swath width, and CO₂ measurement accuracy, multiple linear regressions were performed. This regression technique allows for the use of multiple independent variables as predictors within the same linear model, and also allows the fitting of linear interaction terms between one or more independent variables (Aiken *et al.* 1991). # Single-predictor models Four regression models were fit for each of the two independent variables (Equations 1-4). These single-predictor models appear in the first eight rows of Table 2. Equation (1) $Y = b_0 + b_1 X$ Equation (2) $Y = b_0 + b_1 \log X$ Equation (3) $\log Y = b_0 + b_1 X$ Equation (4) $\log Y = b_0 + b_1 \log X$ where Y = CO2 measurement accuracy (ppmv) and $X = \text{either spatial resolution (km}^2) \text{ or swath width (km)}$ # Two-predictor models Next, models were fit with both independent variables as predictors to determine whether a better fit might be achieved. Equation (5) $$Y = b_0 + b_1 SR + b_2 SW$$ where $Y = CO_2$ measurement accuracy (ppmv) or its log transform $SR = spatial \ resolution \ (km^2)$ $SW = swath \ width \ (km)$ # Two-predictor models with an interaction term Finally, models were fit with both independent variables as predictors, as well as an interaction term between spatial resolution and swath width. Equation (6) $$Y = b_0 + b_1 SR + b_2 SW + b_3 SR*SW$$ where $Y = CO_2$ measurement accuracy (ppmv) or its log transform $SR = \text{spatial resolution (km}^2)$ $SW = \text{swath width (km)}$ The smallest value of Akaike's information criterion (AIC) was then used to determine the model with the best fit to the data (Burnham and Anderson 2002). #### RESULTS # Single-predictor models As was expected, CO_2 can be measured with greater accuracy when the spatial resolution (ground pixel size) of the satellite instrument becomes smaller (Figure 1). However, this relationship is weak; spatial resolution alone is not significant in three of the four models where it is the only factor (Table 2). Swath width has a closer relationship to CO₂ accuracy than spatial resolution (Figure 2). As the swath width of the satellite instrument decreases, the instrument tends to be able to measure CO₂ with greater accuracy. The limit on CO₂ accuracy is the CO₂ LiDAR (ASCENDS); this laser-based instrument has the most narrow swath width of all, and can measure CO₂ to within 1 ppmv. In contrast to spatial resolution, swath width is significant in all four models where it appears as the only factor (Table 2). # Multiple-predictor models In conducting exploratory plots of the data, a close relationship had been found between instrument spatial resolution and swath width (Figure 3). Finer spatial resolution is associated with a narrower swath width, as was originally expected because of constraints inherent in the spectrometer technology, constraints in data collection and transfer, or perhaps both. To account for this relationship, models with an interaction term between spatial resolution and swath width were developed. These models perform better at fitting the data than those with single predictors, as well as a two-predictor model without this interaction term (Table 2). The model of best fit in this analysis is Equation 7, with an AIC of -28.457. In this model, all three predictors are significant: spatial resolution, swath width, and an interaction term between spatial resolution and swath width. Equation (7) $$\log(\text{CO2Acc}) = 5.157\text{e}-02 + 5.800\text{e}-04 \text{ SR} + 3.347\text{e}-04 \text{ SW} -5.912\text{e}-07 \text{ SR} * \text{SW}$$ where CO2Acc = CO₂ measurement accuracy (ppmv) SR = spatial resolution (km²) SW = swath width (km) ## The most accurate instruments All instruments in this paper have sufficient sensitivity in one or more CO_2 absorption bands to detect CO_2 to within 4 ppmv of its ground or air-measured value (Table 1). However, only three instruments meet the spatial resolution and accuracy requirement posed by Bovensmann *et al.* (2010) for the monitoring of anthropogenic point sources. The CarbonSat mission planned for 2018 has an instrument with 2 ppmv accuracy and the largest spatial resolution of the three, at 2x2 km (4 km²). The Tropospheric Emission Spectrometer (TES) currently in service has a 1.3 ppmv CO₂ measurement accuracy, and the second Orbiting Carbon Observatory (OCO-2) planned for 2013 is expected to have a 1 ppmv CO₂ accuracy. Following the general finding of this study that spatial resolution and swath width together are significant predictors of CO₂ measurement accuracy, these three instruments notably have the smallest swath widths of all the instruments examined (Figure 2). For the most accurate CO₂ emissions inventories obtained by remote sensing, data should be employed from the three instruments above. #### CONCLUSIONS The key finding of this study was the relationship of spatial resolution and swath width to CO₂ measurement accuracy. Spatial resolution alone is not significant but swath width is, and the combination of swath width and spatial resolution yields the best fit to the available data. This knowledge is important for the design of future CO₂-monitoring satellite instruments because of the increasing need for accurate estimates of anthropogenic CO₂ emissions. If an instrument is to be designed to measure CO_2 concentration with the greatest accuracy, it should ideally be designed with a fine spatial resolution of 2x2 km (4 km^2) or less, and the smaller the swath width the better, up to an extent. As swath width decreases, the time it takes to acquire complete coverage of an area increases. As spatial resolution becomes finer, the amount of data from the instrument that must be transmitted and processed also increases. Thus, the best solution would be an instrument with the requisite 4 km^2 or less spatial resolution, and as broad a swath width as possible without sacrificing measurement accuracy. The CarbonSat instrument meets both these criteria, but unfortunately will not be launched before 2018. It should be noted that measuring CO₂ concentration is only the first step in determining the anthropogenic CO₂ fluxes that are the actual emissions into the atmosphere by human activities (JASON 2011). A necessary next step in the process is the "model inversion" required to go from concentration measurements to emissions estimates. Since the transport of CO₂ from source to point of measurement is highly dependent on meteorological variables such as wind speed and temperature, the modeling uncertainty may very well dominate measurement uncertainty. However, progress has been made in lowering the modeling uncertainty. A high-resolution (1.3 km) mesoscale atmospheric transport model was recently coupled with ground-based observations to detect a change in emissions of approximately 15% at the 95% confidence level (McKain *et al.* 2012). Though ground-based observations were used, the authors of this study argue that more precise urban emissions estimates should be obtainable using integrated column CO_2 measurements from the ground and/or space, due to having lower sensitivity than surface point measurements to the redistribution of emitted CO_2 by small-scale processes. If modeling uncertainty can be significantly lowered, then advances in the accuracy of measuring CO₂ concentration from space will have a greater impact on increasing the accuracy of CO₂ emissions estimates. A study by the JASON scientific advisory group (2011) determined that a CO₂ measurement uncertainty of +/- 20% (90% confidence level) was possible if a combination of satellite observations, accurate meteorological data, and a ground sensor network was used. Thus, CO₂ emissions inventories conducted entirely by remote sensing should employ additional data sources from the ground in order to boost the measurement accuracy. Likewise, existing ground-based emissions inventories will benefit from using remotely sensed CO₂ emissions data. As examples, the ODIAC CO₂ emissions inventory used remotely sensed night light data as a proxy for CO₂ emissions sources, combined with ground-measured emissions data to enhance the inventory (Oda and Maksyutov 2011). The comprehensive Vulcan CO₂ inventory offers spatial scales as small as 10x10 km and time scales as small as hours, but unfortunately was done without the incorporation of any remotely sensed data. Further improvements in the accuracy of CO₂ emissions inventories are yet to come, in the form of products that merge both the remote sensing and ground-based approaches. #### REFERENCES Aben, I., Hasekamp, O., Hartmann, W. "Uncertainties in the space-based measurements of CO₂ columns due to scattering in the Earth's atmosphere," Journal of Quantitative Spectroscopy and Radiative Transfer 2007, 104(3), 450-459. Aiken, L. S., West, S. G., Reno, R. R. Multiple regression: testing and interpreting interactions: Sage Publications, 1991. Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A., Erzinger, J. "A remote sensing technique for global monitoring of power plant CO₂ emissions from space and related applications," Atmos. Meas. Tech., 2010, 3, 781-811. Burnham, K.P., Anderson, D.R., 2002. *Model Selection and Multi-model Inference*: Springer, New York, p. 488. Butz, A. et al., "Toward accurate CO₂ and CH₄ observations from GOSAT," Geophys. Res. Lett., 2011, 38, L14812, doi:10.1029/2011GL047888. Crevoisier, C. et al. "First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations," Atmos. Chem. Phys. 2009, 9, 4797–4810. Dolman, H. "TOPC Issues," Presentation, Terrestrial Observation Panel for Climate. February 7, 2011. http://www.wmo.int/pages/prog/gcos/aopcXVI/Presentations/10.1_TOPC.pdf European Space Agency (ESA). CEOS Earth Observation Handbook – Catalogue of Satellite Instruments. http://database.eohandbook.com/database/instrumenttable.aspx, November 2011. JASON. 2011. Methods for remote determination of CO2 emissions. MITRE Corp, McLean, VA, JSR-10-300; http://www.fas.org/irp/agency/dod/jason/emissions.pdf. Maddy, E.S., Barnet, C.D., Goldberg, M., Sweeney, C. Liu, X. "CO₂ retrievals from the Atmospheric Infrared Sounder: Methodology and Validation," J. Geophys. Res. 2008, 113, D11301 doi:10.1029/2007JD009402. McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., and Stephens, B. B. Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. PNAS 2012, 109 (22), 8423-8428, doi:10.1073/pnas.1116645109. http://www.pnas.org/content/109/22/8423.full.pdf Oda, T. Maksyutov, S. "A very high-resolution ($1 \text{km} \times 1 \text{km}$) global fossil fuel CO_2 emission inventory derived using a point source database and satellite observations of nighttime lights," Atmos. Chem. Phys. 2011, 11, 543-556. Reuter, M., Bovensmann, H., Buchwitz, M., et al. "Retrieval of atmospheric CO₂ with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results," J. Geophys. Res. 2011, 116, D04301, doi:10.1029/2010JD015047. # **KEY WORDS** CO₂ remote sensing, anthropogenic CO₂ emissions, satellite instruments **Table 1.** Properties of CO₂-sensing satellite instruments. | Mission
Name
Short | Launch
Date | EOL
Date | Mission
Instruments | Instrument
Name | Spectral
Ranges | CO2
accuracy
(average
ppmv) | Spatial
Resolution
(km²) | Swath
Width (km) | |--------------------------|----------------|---------------|------------------------|--|--|--|--------------------------------|----------------------| | NOAA-15 | 1-May-
98 | 31-
Dec-11 | HIRS/3 | High Resolution
Infrared
Sounder/3 | 0.69-14.95 um | 4 (Dolman
2011) | 412.09 | 2240 | | NOAA-16 | 21-Sep-
00 | 31-
Dec-12 | HIRS/3 | High Resolution
Infrared
Sounder/3 | 0.69-14.95 um | 4 (Dolman
2011) | 412.09 | 2240 | | Envisat | 1-Mar-
02 | 31-
Dec-13 | MIPAS | Michelson
Interferometric
Passive
Atmosphere
Sounder | 4.15-14.6 um | n/a | 90 | 30 | | | | | SCIAMACHY | Scanning
Imaging
Absorption
Spectrometer
for Atmospheric
Chartography | 240 - 314 nm,
309 - 405 nm,
394 - 620 nm,
604 - 805 nm,
785 - 1050
nm, 1-1.75
um, 1.94-2.04
um and 2.265-
2.380 um | 2.5 (Reuter
et al 2011) | 1800 | 1000 | | Aqua | 4-May-
02 | 30-Sep-
13 | AIRS | Atmospheric
Infra-red
Sounder | 4-10 um and
3.7-15.4 um | 1.8 (Maddy
et al 2008)
1.5
(Dolman
2011) | 182.25 | 1650 | | NOAA-17 | 24-Jun-
02 | 31-
Dec-14 | HIRS/3 | High Resolution
Infrared
Sounder/3 | 0.69-14.95 um | 4 (Dolman
2011) | 412.09 | 2240 | | SCISAT-1 | 12-
Aug-03 | 1-Mar-
14 | ACE-FTS | Atmospheric
Chemistry
Experiment
(ACE) Fourier
Transform
Spectrometer | 2-13 um (750-
4500 cm-1) | 2
(Foucher et
al 2009) | n/a | solar
occultation | | Aura | 15-Jul-
04 | 30-Sep-
13 | TES | Tropospheric
Emission
Spectrometer | spheric
ion 3.2-15.4 um | | 2.809 | 18 | | NOAA-18 | 20-
May-05 | 31-
Dec-15 | HIRS/4 | High Resolution
Infrared
Sounder/4 | 0.69 um, 3.7-
4.6 um, 6.7-15
um 4 (Dolman
2011) | | 314.16 | 2240 | | Metop-A | 19-Oct-
06 | 31-
Dec-13 | HIRS/4 | High Resolution
Infrared
Sounder/4 | 0.69 um, 3.7-
4.6 um, 6.7-15
um | 4 (Dolman
2011) | 314.16 | 2240 | | | | | IASI | Infrared
Atmospheric
Sounding
Interferometer | 3.4-15.5 um
with gaps at 5
um and 9 um | (Crevoisier
et al. 2009)
2 (Dolman
2011) | 625 | 2052 | | FY-3A | 27-
May-08 | 31-
Dec-11 | IRAS | Infrared
Atmospheric
Sounder | 0.65-14.95 um | 2 (Dolman
2011) | 196 | 952 | | GOSAT | 23-Jan-
09 | 22-Jan-
14 | TANSO-FTS | Thermal and Near infrared Sensor for carbon Observation – Fourier Transform Spectrometer | 0.758-0.775
um (O2), 1.56-
1.72 (CO2-
CH4), 1.92-
2.08 (CO2-
H2O), 5.56-
14.3 (CO2-
CH4) | 2.8 (Butz et
al. 2011)
4 (Dolman
2011) | 110.25 | 750 | | Mission
Name
Short | Launch
Date | EOL
Date | Mission
Instruments | Instrument
Name | Spectral
Ranges | CO2
accuracy
(average
ppmv) | Spatial
Resolution
(km²) | Swath
Width (km) | |--------------------------|----------------|---------------|------------------------|---|--|--|--------------------------------|---------------------| | NOAA-19 | 4-Feb-
09 | 1-Mar-
16 | HIRS/4 | High Resolution
Infrared
Sounder/4 | 0.69 um, 3.7-
4.6 um, 6.7-15
um | 4 (Dolman
2011) | 314.16 | 2240 | | FY-3B | 5-Nov-
10 | 31-
Dec-13 | IRAS | Infrared
Atmospheric
Sounder | 0.65-14.95 um | 2 (Dolman
2011) | 196 | 952 | | NPP | 28-Oct-
11 | 25-
Aug-16 | CrIS | Cross-track
Infrared Sounder | 3.92-4.4 um,
5.7-8.62 um,
9.1-14.7 um | 2 (Dolman
2011) | 615.75 | 2200 | | Metop-B | 31-
May-12 | 31-
May-17 | HIRS/4 | High Resolution
Infrared
Sounder/4 | 0.69 um, 3.7-
4.6 um, 6.7-15
um | 4 (Dolman
2011) | 314.16 | 2240 | | | | | IASI | Infrared
Atmospheric
Sounding
Interferometer | 3.4-15.5 um
with gaps at 5
um and 9 um | 2
(Crevoisier
et al. 2009)
2 (Dolman
2011) | 625 | 2052 | | MIOSAT | 1-Apr-
13 | 1-Apr-
15 | | Mach-Zehnder
Micro-
Interferometer | 0.4 - 4.5 um | n/a | 25 | 5 | | Environsat- | 1-Dec-
13 | 1-Dec-
17 | HRSS-1 | High Resolution
SWIR
Spectrometer | 1.575-1.625
um | n/a | | 380 | | OCO-2 | 15-
Dec-13 | 15-
Dec-16 | OCO-2 | Orbiting Carbon
Observatory-2 | 0.758-0.772
nm (O2),
1.594-1.619
(CO2), 2.042-
2.082 (CO2) | 1 (Dolman
2011) | 2.9025 | 10.3 | | FY-3C | 31-
Dec-13 | 31-
Dec-16 | IRAS | Infrared
Atmospheric
Sounder O.65-14.95 um 2 (Dolman 2011) | | | 196 | 952 | | Metop-C | 2-Apr-
16 | 1-Dec-
21 | IASI | Infrared
Atmospheric
Sounding
Interferometer | 3.4-15.5 um
with gaps at 5
um and 9 um | 2
(Crevoisier
et al. 2009)
2 (Dolman
2011) | 625 | 2052 | | Environsat- | 1-Dec-
16 | 1-Dec-
20 | HRSS-1 | High Resolution
SWIR
Spectrometer | 1.575-1.625
um | n/a | | 380 | | JPSS-1 | 1-Jul-
17 | 1-Jun-
23 | CrIS | Cross-track
Infrared Sounder | 3.92-4.4 um,
5.7-8.62 um,
9.1-14.7 um | 2 (Dolman
2011) | 615.75 | 2200 | | ASCENDS | 1-Sep-
20 | 1-Jan-
23 | CO2 LIDAR
(ASCENDS) | CO2 LIDAR
(ASCENDS) | 1.57233 um | 1 (Dolman
2011) | ~1e-6 | 0.2 | | JPSS-2 | 1-Jan-
23 | 1-Oct-
29 | CrIS | Cross-track
Infrared Sounder | 3.92-4.4 um,
5.7-8.62 um,
9.1-14.7 um | 2 (Dolman
2011) | 615.75 | 2200 | | CarbonSat | 2018 | | CarbonSat | CarbonSat | 0.757-0.775
um, 1.559-
1.675, 2.043-
2.095 | 2 (Dolman
2011) | 4 | 500 | **Table 2.** Details of the linear models tested. | Single Predictor | | | | | | | | | | |---|-----------------------|-------------------------------------|--------------------------|--------------------------------------|--------------|-----------|--|--|--| | y-variable | x-variable | intercept | significance | slope | significance | Model AIC | | | | | log CO2Acc | log SpatRes | 0.11846 | 0.2857 | 0.11634 | 0.0169 * | -14.754 | | | | | CO2Acc | log SpatRes | 1.3929 | 0.0515. | 0.5383 | 0.0672 . | 65.733 | | | | | log CO2Acc | SpatRes | 3.616e-01 | 3.83e-06 *** | 5.967e-05 | 0.575 | -8.6787 | | | | | CO2Acc | SpatRes | 2.5804261 | 2.53e-07 *** | 0.0001213 | 0.847 | 69.468 | | | | | log CO2Acc | log SwathWidth | -0.01689 | 0.854205 | 0.13504 | 0.000201 *** | -21.058 | | | | | CO2Acc | log SwathWidth | 0.8080 | 0.18407 | 0.6128 | 0.00489 ** | 64.899 | | | | | log CO2Acc | SwathWidth | 1.280e-01 | 0.05448. | 1.573e-04 | 0.00028 *** | -20.368 | | | | | CO2Acc | SwathWidth | 1.3183768 | 0.00216 ** | 0.0008100 | 0.00123 ** | 62.063 | | | | | Two Predictors | | | | | | | | | | | CO2Acc ~ Spa | tRes + SwathWidth | | | | | 61.69 | | | | | Estimate Std. Error t value Pr(> t) (Intercept) 1.4650858 0.4412987 3.320 0.00360 ** SpatRes -0.0004298 0.0005359 -0.802 0.43239 SwathWidth 0.0008361 0.0002564 3.261 0.00411 ** | | | | | | | | | | | log(CO2Acc) ~ | ~ log(SpatRes) + log | (SwathWidth) | | | | -19.308 | | | | | (Intercept) -0.21401 0.16086 -1.330 0.1991 log10(SpatRes) -0.05640 0.07799 -0.723 0.4784 log10(SwathWidth) 0.24158 0.09408 2.568 0.0188 * Two Predictors + Interaction | | | | | | | | | | | CO2Acc ~ Sna | tRes * SwathWidth | | | | | 52.536 | | | | | Estimate Std. Error t value Pr(> t) (Intercept) 8.164e-01 3.990e-01 2.046 0.05564. SpatRes 3.105e-03 1.111e-03 2.795 0.01196 * SwathWidth 1.908e-03 3.721e-04 5.127 7.05e-05 *** SpatRes:SwathWidth -3.383e-06 9.814e-07 -3.448 0.00287 ** | | | | | | | | | | | log10(CO2Acc) ~ log10(SpatRes) * log10(SwathWidth) | | | | | | | | | | | Estimate Std. Error t value Pr(> t) (Intercept) | | | | | | | | | | | log10(CO2Acc) ~ SpatRes * SwathWidth | | | | | | | | | | | (Intercept
SpatRes
SwathWidth
SpatRes:Sw | 5.15
5.80 | 7e-02 6.3
0e-04 1.7
7e-04 5.9 | 63e-04 3.2
05e-05 5.6 | 0.42603
91 0.00406
68 2.24e-05 | ; **
; ** | | | | | | Signif. co | des: 0 '***' | 0.001 '**' | 0.01 '*' 0. | 05 '.' 0.1 | ' ' 1 | | | | | Figure 1. CO₂ measurement accuracy and spatial resolution of CO₂-sensing satellites. Figure 2. CO₂ measurement accuracy and swath width of CO₂-sensing satellites. **Figure 3.** Variation of instrument spatial resolution with swath width.